
w
w

w
.i
n

l.
g

o
v

Performance Measures for
RELAP5-3D Version 4.0.3

Dr. George L Mesina
INL/CON-12-27489

RELAP5 International Users Seminar

Oct 23-24, 2012

Outline

• Architectural change impacts timings

• Timing comparisons 4.0.3 vs. 2.4.3

• Detailed study of timings

• Runtime Improvements going forward

Architectural change impacts timings

• Version 2.4 database: mostly a single array (FA) in common storage

• Version 4.0.3 database: memory in many modules with allocatable and
pointer arrays and derived types

• Speed of access

– Common blocks have the fastest memory access

• Location is fixed at beginning of run

– Allocatable memory is slower

• Location and length unfixed until allocated

• Extra overhead to access

Speed of Accessing Data

• Pointer arrays are slower

– Location and length unfixed until allocated

– Pointer overhead (pointing, nullity issues)

– Access to allocatable/pointer array adds
overhead

• Simple Derived Types (SDT) = mix of fixed length
basic data types

– DT access slightly slower than a basic data array

• Fix-length SDT vs fix-length basic close in
access time

• Same for Allocatable SDT and pointer SDT

• Complex Derived Types (CDT) has sub-derived-
types

– Overhead involved to access each sub-level(s)

Common

Allocatable

Pointer

SDT

CDT

F
a
s
te

r

Coding change impacts timings

• Coding changes give and take speed in places

• Direct access out of module VS. through subroutine call sequence

– Overhead involved in subroutine argument access

– Essentially no overhead in module access

• Typically

• Data attributes affect

Module Access Faster

Scalars, fix length array,

Simple DT

Subr. argument faster

Sub-derived type

Toss-up

Array section, pointer

Timings

• Most of the database changes introduced slower memory access
devices into 4.0.3.

• Code slowdown is expected for all problems.

– Five out of six test cases run slower

• For some problems, 4.0.3 is faster than 2.4.3

– Proper advantage taken of pointers and subroutine calls

4.0.3 slower

faster

Timing Study of 4.0.3

• It was reported that 2.4 runs slower than very old versions like
rlpdoebf08

• Sparked a comparison of those two and of 4.0.3 against 2.4.3

• A Fortran program that extracts start and end time from RELAP5-3D
runs for any version was written to perform comparisons efficiently

• NOTE

• The changes reported here will be made in future code releases,
not in 4.0.3

Detailed Study of Timings

• Statistical profiling methods provide insight into code bottlenecks

– Sample where program counter sits in code every so-many clock
cycles (often every 100 – 1000 cycles or so)

– Varies from run to run of the same problem based on computer
workload

– Affected by compiler options such as optimization & inlining

• GPROF is a built-in timer available with Intel Fortran

• It was applied to study Typical PWR 1200 second run

– with default installation options

– Semi- and nearly-implicit

Detailed Study of TYP1200

• With default installation options plus activation for gprof capability

– PHANTV is largest time-consumer

– MOVER and VEXPLT are next

• MOVER copies memory from old to new on a time-step backup or from
new to old on a successful advancement

– Much larger percentage since full back-up replaced partial

• Solver routines should be largest, but are surprisingly efficient

– LU factorization < 1.5% of run time

– Back substitution < 1%

Detailed Study of TYP1200 Nearly

• It was applied to study Typical PWR 1200 second run

– with default installation options

– Semi- and nearly-implicit

– PHANTV is largest time-consumer

– MOVER and VIMPLT are next

• MOVER copies memory from old to new on a time-step backup or from
new to old on a successful advancement

– Much larger percentage since full back-up replaced partial

• Solver routines are again surprisingly efficient

– LU factorization < 3%

Detailed Study of Timings

• Open Speed Shop uses statistical sampling for closer view

– Can show timings by function

– Can show timings within routine – reveals slow lines and loops

• All-function analysis for typical PWR 1200 second

– Power (raising an number to a power) is most time-consuming

• Should be investigated

– PHANTV is second largest

– Heavily impacted by inlining

Runtime Improvements Going Forward

• Analysis of time-consuming lines shows

– Some if-tests are among most time-consuming

– Also some else-clauses (one BLANK else in particular)

– A few do-loop statements

– Some calculation statements ranked high

– Some static quantities were recalculated every time-step

• Mitigation Methods devised thus far:

– For same if-clause(s) repeated with no change to quantities in a
subroutine

• Store comparison in logical variable

• Replace if-clause(s) with variable throughout routine

– Similar strategy can be effective in a long much-used section of
code

Runtime Improvements Going Forward

• For time-consuming else clauses

– Change test order to reduce # things checked

• If things A & B are checked, but mostly B occurs, check B first

– Reverse the if-test (apply .not. to the if-condition)

• Turn off unneeded if-statements

– Diagnostics that are never used except for debugging runs were
“live” in all the BPLU routines.

– Applying an if-def reduced run time

• Do loops run faster :

– With unit (or fixed) stride

– When the start and end values are variables, not calculations

Runtime Improvements Going Forward

• Blocks of calculation statements can be speeded up

– By replacing a repeated array-reference with a scalar copy

• Single calculation statements can sometimes be algebraically
simplified

• Some FORTRAN 95 intrinsic routines are faster than loops

– Introduce judiciously

– Done in solver

• Some static quantities that were calculated in a double loop in
subroutine LEVEL

– This was reduced from 10 inefficient statements to four

– It was moved to input processing

Runtime Improvements Going Forward

• Improvements from mitigation efforts based on Open Speed Shop
information reduced runtime about 0.5%

• Improvements from compiler options can provide 0.5%

• Further improvements possible judicious use of:

– Subroutine call arguments

– Pointers to sub-types

– Intrinsic functions

– Interface blocks

Conclusions

• 4.0.3 runs slower than 2.4.3 on most problems

• 4.0.3 runs faster than 2.4.3 on some problems

• Numerous runtime reductions have already been made in 4.1.0

• Many more techniques remain to be employed.

